Spectral Flow and Bifurcation of Critical Points of Strongly Indefinite Functionals
نویسندگان
چکیده
منابع مشابه
Critical Point Theorems concerning Strongly Indefinite Functionals and Applications to Hamiltonian Systems
Let X be a Finsler manifold. We prove some abstract results on the existence of critical points for strongly indefinite functionals f ∈ C1(X ,R) via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under a new version of Cerami-type condition instead of Palais-Smale condition. As applications, we prove the existence of multiple pe...
متن کاملOn spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملGenericity of Nondegenerate Critical Points and Morse Geodesic Functionals
We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Based on an idea of B. White [24], we prove an abstract genericity result that employs the infinite dimensional Sard–Smale theorem. Applications are given by proving the genericity of metric...
متن کاملon the relationship between critical thinking, metacognition and translation quality of literary and economic texts
این مطالعه سعی دارد تا رابطه تفکر انتقادی و مهارت های شناختی را به عنوان دو عنصر مهم روانشناسی شناختی با کیفیت ترجمه متون ادبی و اقتصادی بررسی کند. صد دانشجوی سال آخر ترجمه که در مقطع کارشناسی مشغول به تحصیل هستند برای شرکت در این مطالعه انتخاب شدند و آزمون های تافل تفکر انتقادی و مهارت های شناختی از آنها گرفته شد. آزمون ترجمه ادبی و اقتصادی نیز برای تعیین سطح کیفیت ترجمه گرفته شد. یافته های حا...
A New Cohomology for the Morse Theory of Strongly Indefinite Functionals on Hilbert Spaces
Take a C function f :M → R on a complete Hilbert manifold which satisfies the Palais–Smale condition. Assume that it is a Morse function, meaning that the second order differential df(x) is non-degenerate at every critical point x. Recall that the Morse index m(x, f) of a critical point x is the dimension of the maximal subspace on which df(x) is negative definite. Then the basic result of Mors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2000
ISSN: 0022-0396
DOI: 10.1006/jdeq.1999.3723